

ICF Consulting / Laboratory Data Consultants

Environmental Services Assistance Team, Region 9 1337 South 46th Street, Building 201, Richmond, CA 94804-4698 Phone: (510) 412-2300 Fax: (510) 412-2304

SFUND RECORDS CTR 88072816

MEMORANDUM

TO:

Nancy Riveland-Har

Remedial Project Manager Cleanup Section 4, SFD-7-4

THROUGH:

Rose Fong

ESAT Project Officer

Quality Assurance (QA) Office, PMD-3

FROM:

Doug Lindelof NZ

Data Review and QA Document Review Task Manager Environmental Services Assistance Team (ESAT)

ESAT Contract No.: 68-W-01-028 Task Order No.: B01

Technical Direction No.: B0105128 Amendment 2

DATE:

July 16, 2002

SUBJECT:

Review of Analytical Data, Tier 3

Attached are comments resulting from ESAT Region 9 review of the following analytical data:

SITE: Omega Chem OU-2 SITE ACCOUNT NO.: 09 BC LA02

CAD042245001 CERCLIS ID NO.:

CASE NO.: 30499 SDG NO.: Y0GR9

LABORATORY: Clayton Group Services (CLAYTN)

ANALYSIS: Volatiles **SAMPLES:** 1 Water Sample May 31, 2002 COLLECTION DATE:

Denise McCaffrey, ESAT/LDC **REVIEWER:**

The comments and qualifications presented in this report have been reviewed by the EPA Task Order Project Officer (TOPO) for the ESAT Contract, whose signature appears above.

If there are any questions, please contact Rose Fong (QA Program/EPA) at (415) 972-3812.

Attachment

Cecilia Moore, CLP PO USEPA Region 5 Steve Remaley, CLP PO USEPA Region 9

ESAT File

CLP PO: [X] FYI [] Attention [] Action

SAMPLING ISSUES: [] Yes [X] No

B0105128-1702/30499/Y0GR9V.wpd

Data Validation Report

Case No.:

30499

SDG No.: Y0GR9

Site:

Omega Chem OU-2

Laboratory: Reviewer: Clayton Group Services (CLAYTN) Denise McCaffrey, ESAT/LDC

Date:

July 16, 2002

I. <u>Case Summary</u>

SAMPLE INFORMATION:

Samples: Y0GR9

Concentration and Matrix: Low Level Water

Analysis: Volatiles

SOW: OLC03.2

Collection Date: May 31, 2002

Sample Receipt Date: June 1, 2002

Analysis Date: June 6, 2002

FIELD QC:

Trip Blanks (TB):

Y0GR5

Field Blanks (FB):

Not Provided

Equipment Blanks (EB):

Not Provided

Background Samples (BG):

Not Provided

Field Duplicates (D1):

Y0GR8 and Y0GR9

METHOD BLANKS AND ASSOCIATED SAMPLES:

VBLKLB: Y0GR9, Y

Y0GR9, Y0GR9DL, and VHBLKLA

TABLES:

1A: Analytical Results with Qualifications

1B: Data Qualifier Definitions for Organic Data Review

MS- Matrix Spike, MSD - Matrix Spike Duplicate, DL - Dilution

CLP PO ACTION:

None.

CLP PO ATTENTION:

None.

SAMPLING ISSUES:

None.

ADDITIONAL COMMENTS:

Results for trip blank Y0GR5, collected with the samples of this sample delivery group (SDG) on May 31, 2002, are located in Case No. 30499, SDG No. Y0GP9.

Results for sample Y0GR8, the field duplicate of sample Y0GR9, are included in Case No. 30499, SDG No. Y0GP9.

Tentatively identified compounds (TICs) detected in the sample are reported on Form 1F and is attached to this report.

Standard preparation logs are missing in the data package and cannot be evaluated. This information was requested from the laboratory but has not been received to date. Data are not qualified in this report due to missing standard preparation logs. Refer to the attached telephone record log for details.

This report was prepared in accordance with the following documents:

- ESAT Region 9 Standard Operating Procedure 901, Guidelines for Data Review of Contract Laboratory Program Analytical Services (CLPAS) Volatile and Semivolatile Data Packages;
- USEPA Contract Laboratory Program Statement of Work for Low Concentration Organics Analysis, OLC03.2, December 2000; and
- USEPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, June 2001

II. Validation Summary

<u></u>	Acceptable/0	Comment
HOLDING TIMES	YES	
GC/MS TUNE/GC PERFORMANCE	YES	
INITIAL CALIBRATIONS	YES	
CONTINUING CALIBRATIONS	YES	
LABORATORY BLANKS	YES	
FIELD BLANKS	YES	
DEUTERATED MONITORING COMPOUNDS (DMCs)	YES	
MATRIX SPIKE/DUPLICATES	YES	
INTERNAL STANDARDS	YES	
COMPOUND IDENTIFICATION	YES	
COMPOUND QUANTITATION	YES	B, C
SYSTEM PERFORMANCE	YES	
FIELD DUPLICATE SAMPLE ANALYSIS	NO	Α

III. Validity and Comments

A. In the analysis of the field duplicate pair, the following outliers were obtained for the analytes listed below.

	YUGR8 (D1)	YUGK9 (D1)	
<u>Analyte</u>	Conc. $\mu g/L$	Conc. $\mu g/L$	<u>RPD</u>
Dichlorodifluoromethane	. 3	10U	N/A
Methyl tert-butyl ether	32	22	37%
1,1-Dichloroethane	0.6	1 0 U	N/A
1,1,1-Trichloroethane	2	1 0 U	N/A
Benzene	0.9	10U	N/A

A relative percent differences (RPD) value is not calculated and is presented above as "N/A" when an analyte is detected in a sample but is nondetected (U) at the CRQL in the associated field duplicate sample. The effect on data quality is not known.

It should be noted that sample Y0GR9 was analyzed at a 20-fold dilution, whereas sample Y0GR8 was analyzed undiluted. The lower concentrations detected in sample Y0GR8 were most likely diluted out in sample Y0GR9.

A relative percent difference (RPD) of 37% was obtained for methyl tert-butyl ether in the analysis of field duplicate pair Y0GR8 and Y0GR9. The value obtained for methyl tert-butyl ether in sample Y0GR8 exceeded the calibration range and is considered to be quantitatively questionable. The effect on the data quality is not known.

The analysis of field duplicate samples is a measure of both field and analytical precision. The imprecision in the results of the analysis of the field duplicate pair may be due to the sample matrix or poor sampling or analysis techniques.

- B. Sample Y0GR9 was analyzed at a 50-fold dilution due to the high level of 1,1,2-trifluoro-1,2,2-trichloroethane. The result for 1,1,2-trifluoro-1,2,2-trichloroethane is reported from the 50-fold diluted sample in Table 1A; results for all other analytes are reported from the original analysis performed at a 20-fold dilution.
- C. Sample Y0GR9 was analyzed at a 20-fold dilution due to the high levels of target analytes. The CRQLs listed for this sample in Table 1A have been multiplied by the dilution factor.

Page 1 of 2

ANALYTICAL RESULTS Tier 3 Table 1A

Case No.: 30499

Site: OMEGA RECOVERY SERV.

Lab: CLAYTON GROUP SERVICES INC.

SDG No.: Y0GR9

Reviewer: DENISE MCCAFFREY, ESAT/LDC

10U

0.5L

0.5U

Date: 07/16/2002

1,2-Dibromoethane

QUALIFIED DATA
Concentration in ug/L

Analysis Type: Low Level Water Samples

For Volatiles

Station Location GW202-OW6-1048 Method Blank Storage Blank Sample ID D1 VBLKLB VHBLKLA CROL 05/31/2002 Collection Date Dilution Factor: 20.0 1.0 1.0 Volatile Compound Result Val Com Result Val Com Result Val Com Result Val Com Result Val Val Com Result Val Com Result Com Dichlorodifluoromethane 10U AC 0.5U 0.5U 0.5 300 100 Chloromethane 0.5U .0:5U 0.5 10U 0.50 Vinyl Chloride С 0.5U 0.5 Œ 0.5U 0.5U 0.5 Bromomethane 100 C. 10U С 0.5U 0.5U 0.5 Chloroethane Trichlorofluoromethane 340 0.5Ü 0.5 . 0.5U Seculation and 1,1-Dichloroethene 240 С 0.5U 0.5 0.5U 840 BC 0.5U **∕** 0.5 1,1,2-Trichloro-1,2,2-trifluoroethane 0.50 :000 12 100U С 5U Acetone 5 5 100 Carbon Disulfide C 0.5U 0.5U 0.5 4624 10U С 0.50 0.5U 0.5 Methyl Acetate Methylene Chloride: *** 10U 0.5U ∾Ó:ŠÜ 0.5 , 1995 to 3, 2000 :30 trans-1,2-Dichloroethene 10U С 0.5U 0.5U 0.5 22 W. 0.5 Methyl tert-Butyl Ether 0.5U 0.5U AC' AC 0.50 1,1-Dichloroethane 10U 0.5U 0.5 cis-1,2-Dichloroethène **∀10**U C 0.5 0.5U 0.5U 100U С 5U 2-Butanone 5U 5 10U C 0.5Ü 0.5 ħ Bromochloromethane-0.50 M. Chloroform 10U С 0.5U 0.5U 0.5 0.5U ÃC 78. 3.564 100 0.5Ů 1,1,1-Trichtoroethane 0.5 10U С 0.5U 0.5 0.5U Сусюћехале 100 Carbon Tetrachloride C 0.5U 0.5U 0.5 10U AC 0.5U 0.5U 0.5 Benzene Z.S 0.50 1,2-Dichloroethane 100 C. 0.5 0.5U 0.5U Trichloroethene 23 С 0.5U 0.5 0.50 Methylcyclohexane 10U C 0.5U 0.5 200 10U С 0.5U 0.5U 0.5 1,2-Dichloropropane C 77 0.5U Bromodichloromethane **№ 10Ú** 0.5U 0.5 10U С 0.5U 0.5U 0.5 cis-1,3-Dichloropropene 100∪ ROS. C. 5U - 5Ú 5 100 4-Methyl-2-pentanone 200 Toluene 10U С 0.5U 0.50 0.5 N.C trans-1 3-Dichloropropene 0.50 . 10U C 0.5U 0.5 aige. 833.6 1,1,2-Trichloroethane 10U С 0.5L 0.5U 0.5 Tetrachloroethene C,0:5U 0.5 . 0.5U Septem 😁 50m С 2-Hexanone 100U 5U 5U 3 ** Dibromochloromethane 0.5Ŭ 0.5 10U ∲ C 0.5U 2

0.5

Case No.: 30499

SDG No.: Y0GR9

Tier 3 Table 1A

Site: OMEGA RECOVERY SERV.

Lab: CLAYTON GROUP SERVICES INC.
Reviewer: DENISE MCCAFFREY, ESAT/LDC

Date: 07/16/2002

QUALIFIED DATA

Concentration in ug/L

Analysis Type: Low Level Water Samples

For Volatiles

Station Location :	GW202-OW6	1048		Method Blan	ık		Storage Blan	k					ı								
	Y0GR9	- 1040	D4				_	IN.		CDO!	-										1
Sample ID :			D1	VBLKLB			VHBLKLA			CRQL						!					
Collection Date :	05/31/2002			1																	
Dilution Factor :	20.0			1.0			1.0														
Volatile Compound	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com	Result	Val	Com
Chlorobenzene	10U		С	0.5U			0.5∪			0.5	i										
Ethylbenzene	, 10U	2	C .	0.5U			0.5U			- 0.5		1 m	7 100, pr 1000	and the same of th							
Xylenes (total)	10U		С	0.5U			0.5∪			0.5											l
Styrene	10U	Esi	C.	0.5U			0.5∪	. 72		0.5			**	in .							
Bromoform	10U		С	0.5U			0.5U			0.5											
/sópropylbenzene			С	0.50			0.5U	S.Mar.		0.5											
1,1,2,2-Tetrachloroethane	10U		С	0.5U	l		0.5∪			0.5											1
1,3-Dichlorobenzene	∴ 10Ù.		_e C			2	0.5∪			0.5		2011. Carl					Yanzin	90% A.S.	O WALL		
1,4-Dichlorobenzene	10U		С	0.5U			0.5U			0.5									·		i
1,2-Dichlorobenzene	- 10U	32.22	С	0.5U		300	0.5U			0.5	-					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in Table	A STATE OF THE PARTY OF THE PAR	2.24.00		
1,2-Dibromo-3-chloropropane	10U		С	0.5U			0.5∪			0.5											
1,2,4-Trichlorobenzene 🍇 🎉 🐞	· • 4√10Ü*	1.000 Miles	C\^\			هضنا	0.5U	Sec. Com.	s. mciastoire	0.5	<u>Direct</u>	2000m	Mary 170					agas aminisa	ودغد بشنجوسوس مثنى	الكوميين	Man Lid
1,2,3-Trichlorobenzene	10U		С	0.5U			0.5U			0.5											

Val - Validity. Refer to Data Qualifiers in Table 1B.

Com - Comments. Refer to the Corresponding Section in the Narrative for each letter.

CRQL - Contract Required Quantitation Llmit, N/A - Not Applicable, NA - Not Analyzed

D1, D2, etc. - Field Duplicate Pairs

FB - Field Blank, EB - Equipment Blank, TB - Trip Blank, BG - Background Sample

TABLE 1B

DATA QUALIFIER DEFINITIONS FOR ORGANIC DATA REVIEW

The definitions of the following qualifiers are prepared according to the document, "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," February 1994.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- L Indicates results which fall below the Contract Required Quantitation Limit. Results are estimated and are considered qualitatively acceptable but quantitatively unreliable due to uncertainties in the analytical precision near the limit of detection.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

1LCF

LOW CONCENTRATION WATER VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name Clayton Group Services Contract 68-W-01-046
YOGR9

Lab Code <u>CLAYTN</u> Case No. <u>30499</u> Client No. SDG No. <u>Y0GR9</u>

Lab Sample ID: 02060002-001A Date Received: 06/01/2002

Lab File ID: <u>L1077.D</u> Date Analyzed: <u>06/06/2002</u>

Purge Volume: 25 (ML) Dilution Factor: 20.00

GC Column DB-VRX ID: 0.25 (MM) Length: 60 (M)

Number TICs found: 6

:	CAS NUMBER	COMPOUND NAME		RT	EST.CONC. (UG/L)	0
01		unknown (5.29)		5.29	18	J
02	1455-13-16	Methanol-d4 (method le	mh)	-5:52-	1000	BJ
03		-unknown (6.89) Dichlorotrifluoro	ethane	6.89	12	J
04	0000-00-0	cis-1,3-Dichloropropene-d4 (~~ ~	athed flow	14.75	48	ВJ
05	000000-00-0		1	20.37	18	NJ
06		·unknown (22.27)	+	22.27	12	BJ

5L, 7/15/02.

In Reference to Case No. 30499, SDG No. YOGP9 and YOGR9

Contract Laboratory program REGIONAL/LABORATORY COMMUNICATION SYSTEM

Telephone Record Log

	Date of Call:	July 16, 200)2		·
	Laboratory Name:	Clayton Labo	oratory Services		
	Lab Contact:	<u>Karen Coonar</u>	i .		
	Region:	9			
	Regional Contact:	Steve Remale	ey, CLP PO		
•	ESAT Reviewer:	<u>Santiago Lee, B</u>	ESAT/Laboratory	Data Con	<u>sultants</u>
	Call Initiated By:	I	Saboratory	X	Region
	In reference to da SDG No.: YOGP9 and			:	
Summa	ry of Questions/iss	ues Discussed:			
(SDG) of th ICF C Team,	ollowing items were Please respond we OLM04.2 Statemer onsulting/Laborator Region 9, 1337 S. 12-2304.	within 7 days as it of Work (SOW) Ty Data Consulta	s specified in S . Send respons ants, Environmen	ection 2 e and re tal Serv	.2 of Exhibit B submissions to ices Assistance
1.	In order to fully following informat date of standard, concentration and the above listed of	ion for all sta preparation dat volume of spiki	andards (calibra ce, lot number,	tion and standard	QC): expiration sources,
Summa	ry of Resolution: T	o be determined	1.		
Regio	nal Contact Signatu	ire	Date of Reso	lution	
Distr	ibution: (original)	ESAT: (1) Lab co	nny. (2)Regional	Copy. (3)CLASS copy

TECHNICAL DIRECTION NO. B0105128 Amendment 2

SITE ACCOUNT NO: 09 BC LA02	SITE NAME: Omega Chem OU-2					
CERCLIS CAD042245001 [X] RI/RA [] Sit	e Assess [] Enforcement [] Emergency					
Resp [] Brownfields						
TO NUMBER: B01 68-W-01-028 ICF Consulting	DATE: 6-21-026-24-027-1-02					
TASK: 5. Superfund Data Review/Document Review	TOPO: Rose Fong					
DESCRIPTION OF SERVICES TO BE PERFORMED:	Include Any Deliverables, Due Dates Or Other Details Provided To Contractor of					
Performance Required) Amendment 1: Add SDGs Y0GP9 and Y0GR9. Delay	due date.					
Y0GP0.WK Y0GR9.WK						
Amendment 2: Y0GP0 for archive only.						
B30499.W01046.Y0GP B30499.W01038.Y0GW						
Data Package Information	Project Information:					
Case# 30499 Data type VO	EPA Site Manager Nancy					
	Y0GW6; GP9 & GR9 Mail					
Code SFD-7-4	Laboratory A4					
[] EPA-Lead Non-CLP [] REAP EM	· — · · · · · · · · · · · · · · · · · ·					
Level of Review: Tier 3 of volatiles only, focusing on PCE and its degradation products, freons, and BTEX. No review of other data.						
· · · · · · · · · · · · · · · · · · ·	ing on PCE and its degradation products,					
· · · · · · · · · · · · · · · · · · ·	ing on PCE and its degradation products, Due date					
freons, and BTEX. No review of other data.						

Pkgs to ESAT: 6/28 Y0GP0: 2W; GW6: 20W; GP9:20W; GR9:1W

Complete:

Rec:

Transmit: